
Design and Analysis of Algorithms
Dynamic Programming (I)

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

1 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

2 / 48

Algorithmic Paradigms
We have seen two elegant design paradigms.

Divide-and-conquer. Break up a problem into independent
subproblems,� solve each subproblem, combine solutions to
subproblems to form solution to original problem.
Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

�

The two paradigms yield lots of efficient algorithms for a variety of
important tasks.

We now turn to another sledgehammer of the algorithms craft:
dynamic programming, techniques of very broad applicability.

Predictably, the generality often comes with a cost of
efficiency.

3 / 48

Algorithmic Paradigms
We have seen two elegant design paradigms.

Divide-and-conquer. Break up a problem into independent
subproblems,� solve each subproblem, combine solutions to
subproblems to form solution to original problem.
Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

�
The two paradigms yield lots of efficient algorithms for a variety of
important tasks.

We now turn to another sledgehammer of the algorithms craft:
dynamic programming, techniques of very broad applicability.

Predictably, the generality often comes with a cost of
efficiency.

3 / 48

Algorithmic Paradigms
We have seen two elegant design paradigms.

Divide-and-conquer. Break up a problem into independent
subproblems,� solve each subproblem, combine solutions to
subproblems to form solution to original problem.
Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

�
The two paradigms yield lots of efficient algorithms for a variety of
important tasks.

We now turn to another sledgehammer of the algorithms craft:
dynamic programming, techniques of very broad applicability.

Predictably, the generality often comes with a cost of
efficiency.

3 / 48

Dynamic Programming History

Dynamic programming. Break up a problem into a series of
overlapping subproblems of the same type, and build up solutions
to larger and larger subproblems.

fancy name for caching away intermediate results in a table
for later reuse

Bellman. Pioneered the systematic study of DP in 1950s. �
dynamic programming = planning over time ⇒ optimal plan
multistage processes
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.

4 / 48

Dynamic Programming History

Dynamic programming. Break up a problem into a series of
overlapping subproblems of the same type, and build up solutions
to larger and larger subproblems.

fancy name for caching away intermediate results in a table
for later reuse

Bellman. Pioneered the systematic study of DP in 1950s. �
dynamic programming = planning over time ⇒ optimal plan
multistage processes
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.

4 / 48

Dynamic Programming Applications

Areas
Bioinformatics.
Control theory.
Information theory.
Operations research.
Computer science: theory, graphics, AI, compilers, systems, ...
�

Some famous dynamic programming algorithms
Unix diff for comparing two files.
Viterbi for hidden Markov models.
De Boor for evaluating spline curves.
Smith-Waterman for genetic sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context-free grammars.

5 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

6 / 48

Shortest Path in DAG
Finding shortest path (from a speical source node) is especially
easy in directed acyclic graphs (DAGs). We recapitulate this case,
because it lies at the heart of dynamic programming.

Nodes of DAG can be linearized, i.e., arranged on a line so
that all edges go from left to right
Looking ahead, in this way we create an order

s

a

c

b

d

e

1

2

4

6

3

1

2

1

s c a b d e

1

2 4

3

6 1

2

1

Figure: A DAG and its linearization (topological ordering)
7 / 48

Why this helps with shortest paths

Example. s→ d: the only way get to d is through its predecessors
b or c, so we need only compare these two routes:

dist(s, d) = min{dist(s, b) + 1, dist(s, c) + 3}

A similar relation can be written for every node.
Computing these dist values in the left-to-right order ⇒
before getting to a node v, we already have all the
information to compute dist(s, v) ⇒ computing all the
distance in a single pass

8 / 48

Why this helps with shortest paths

Example. s→ d: the only way get to d is through its predecessors
b or c, so we need only compare these two routes:

dist(s, d) = min{dist(s, b) + 1, dist(s, c) + 3}

A similar relation can be written for every node.
Computing these dist values in the left-to-right order ⇒
before getting to a node v, we already have all the
information to compute dist(s, v) ⇒ computing all the
distance in a single pass

8 / 48

Algorithm for Shortest Paths in DAG

Algorithm 1: ShortestPath(V,E)

1: initialize all dist(·, ·) to ∞, dist(s, s) = 0;
2: for v ∈ V \{s} in linearized order do
3: dist(s, v) = min(u,v)∈E{dist(s, u) + e(u, v)}
4: end

Two methods to estimate computation complexity:
Analyze the algorithm: there are at most |E| times
comparisions ⇒ O(|E|)
Analyze the Storage: size of table dist is |V |, computing each
item requires at most |V | times comparisions ⇒ O(|V |2)

the second estimation could be too coarse when the graph is
sparse, since in that case |E| ≪ |V 2|

9 / 48

Algorithm for Shortest Paths in DAG

Algorithm 2: ShortestPath(V,E)

1: initialize all dist(·, ·) to ∞, dist(s, s) = 0;
2: for v ∈ V \{s} in linearized order do
3: dist(s, v) = min(u,v)∈E{dist(s, u) + e(u, v)}
4: end

Two methods to estimate computation complexity:
Analyze the algorithm: there are at most |E| times
comparisions ⇒ O(|E|)
Analyze the Storage: size of table dist is |V |, computing each
item requires at most |V | times comparisions ⇒ O(|V |2)

the second estimation could be too coarse when the graph is
sparse, since in that case |E| ≪ |V 2|

9 / 48

Recap

The above algorithm solves a collection of subproblems

{dist(s, u)}u∈V

start from the smallest of them, dist(s, s)
then proceed to solve progressively “larger” subproblems:
distances to vertices that are further along the linearization
large subproblems can be solved by previously solved smaller
subproblems

This is a very generic technique.
dist(·, ·) in our particular case computing the minimum of
sums, we could just as well make it to be maximum.
Or we could use a product instead of a sum.

10 / 48

Recap

The above algorithm solves a collection of subproblems

{dist(s, u)}u∈V

start from the smallest of them, dist(s, s)
then proceed to solve progressively “larger” subproblems:
distances to vertices that are further along the linearization
large subproblems can be solved by previously solved smaller
subproblems

This is a very generic technique.
dist(·, ·) in our particular case computing the minimum of
sums, we could just as well make it to be maximum.
Or we could use a product instead of a sum.

10 / 48

Key Property of Dynamic Programming

Iterative optimal substructure
∃ an ordering on the subproblems and an iterative relation:

subproblems appear in the ordering
iterative relation shows how to solve a subproblem P
using the answers to “smaller” subproblems P ′, a.k.a.
optimal solution for P can be derived from optimal
solutions for P ′ ⊂ P

; admits iteration in a single pass

11 / 48

DP Paradigm

Dynamic programming is a very powerful algorithmic paradigm: a
problem is solved by identifying a collection of subproblems and
tackling them one by one

smallest first
using answers to small problems to solve larger ones
until reaching the original problem

In dynamic programming, the DAG is implicit and should always be
kept in mind

node ↔ subproblem/state (associated with an optimal
function value)
edge a→ b represents dependencies between a and b, in other
words, if to solve subproblem b we need to the answer to
subproblem a, then there is a (conceptual) edge from a to b
⇒ a is thought of as a smaller subproblem than b

12 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

13 / 48

All Pairs Shortest Paths

Life is complicated. In practice, we need algorithm for general
directed graph: G could have negative weights.

Dijkstra’s algorithm fails to handle negative weights.
Bellman-Ford algorithm works correctely with SSSP in general
directed graph with higher complexity O(|V ||E|).

What if we want to find the shortest path not just from a
single-source s but all sources?

Naive idea: invoking Bellman-Ford algorithm |V | times, once for
each starting node ; running time O(|V |2|E|)

typically, |E| > |V |

Better algorithm?

14 / 48

Floyd-Warshall Algorithm

Floyd-Warshall algorithm: a better dynamic-programming
algorithm with better complexity O(|V |3)
Basic idea. the shortest path u→ w1 → · · · → wl → v between
(u, v) uses some number of intermediate nodes — possibly none.

Suppose we disallow intermediate nodes altogether ; solve
all-pairs shortest paths at once: dist(u, v) = e(u, v).

What if we gradually expand the set S of permissible intermediate
nodes?

We can do this one node at a time, updating the shortest path
lengths at each stage.

Eventually S grows to V ⇒ at this point all vertices are
allowed to be on all paths ; find the true shortest paths
between vertices of the graph.

15 / 48

Dynamic Programming on Intermediates

Number the vertices in V as {1, 2, . . . , n}, and let dist(i, j, k)
denote the length of the shortest path from i to j in which only
nodes {1, 2, . . . , k} can be used as intermediates.

Initially, dist(i, j, 0) is the length of the direct edge between i
and j if it exists and is ∞ otherwise.

i

j

kdist(i, k, k − 1)

dist(k, j, k − 1)
dist(i, j, k − 1)

dist(i, j, k)
Gradually increase the number of admissble intermediate node.
The initial value of dist(i, j, k) is dist(i, j, k − 1).
Using k gives us shorter path from i to j if and only if

dist(i, k, k − 1) + dist(k, j, k − 1) < dist(i, j, k − 1)

In this case, dist(i, j, k) should be updated accordingly.
16 / 48

Floyd-Warshall Algorithm

Algorithm 3: FloydWarshall(G = (V,E))

1: for i = 1 to n do
2: for j = 1 to n do
3: dist(i, j, 0) =∞
4: end
5: end
6: for (i, j) ∈ E do dist(i, j, 0) = e(i, j) ;
7: for k = 1 to n do
8: for i = 1 to n do
9: for j = 1 to n do

10: dist(i, j, k) = min{dist(i, k, k − 1) + dist(k, j, k −
1), dist(i, j, k − 1)}

11: end
12: end
13: end

17 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

18 / 48

Longest Increasing Subsequences

Input: a sequence of numbers a1, . . . , an.
A subsequence is any subset of these numbers taken in order,
of the form ai1 , . . . , aik where 1 ≤ i1 ≤ · · · ≤ ik ≤ n.
An increasing subsequence is one in which the numbers are
getting strictly larger.

Goal: find the increasing subsequence of greatest length.

Example
5 2 8 3 6 9 7

The arrow denotes transitions between consecutive elements of the
optimal solution in the original sequence.

19 / 48

The DAG of Increasing Subsequence
Goal: find the optimal soultion from the solution space (all
increasing subsequences) ⇒ create a graph of all permissible
transitions for increasing subsequence

Establish a node i for each element ai, add directed edges
(i, j) whenever it is possible for ai and aj to be consecutive
elements in an increasing subsequence, i.e., i < j ∧ ai < aj

G = (V,E) is a DAG, since (i, j) ∈ E iff i < j

there is a one-to-one correspondence between increasing
subsequences and paths in this DAG

5 2 8 3 6 9 7

20 / 48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.

Define L(j): number of nodes on the longest path (the longest
increasing subsequence) ending at j

interpret L(j) as the longest path (+1) with j as destination
from all possible source

ℓ = max
j∈[n]

L(j)

To solve LIS, we defined a collection of subproblems {L(j)}j∈[n]
with the optimal sub-structure property that allows them to be
solved in a single pass.

21 / 48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.
Define L(j): number of nodes on the longest path (the longest
increasing subsequence) ending at j

interpret L(j) as the longest path (+1) with j as destination
from all possible source

ℓ = max
j∈[n]

L(j)

To solve LIS, we defined a collection of subproblems {L(j)}j∈[n]
with the optimal sub-structure property that allows them to be
solved in a single pass.

21 / 48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.
Define L(j): number of nodes on the longest path (the longest
increasing subsequence) ending at j

interpret L(j) as the longest path (+1) with j as destination
from all possible source

ℓ = max
j∈[n]

L(j)

To solve LIS, we defined a collection of subproblems {L(j)}j∈[n]
with the optimal sub-structure property that allows them to be
solved in a single pass.

21 / 48

Algorithm and Complexity Analysis
Algorithm 4: LIS(A)
1: initialize all L(i) = 0 for i ∈ [n] by adding dummy edge

e(i, i) = 0 ∈ E;
2: for j = 1 to n do L(j) = 1 + max{L(i) : (i, j) ∈ E} ;
3: return maxj{L(j)}

Note that (i, j) ∈ E is possible only when i < j.

The algorithm requires the predecessors of j to be known
Construct the adjacency list of the reverse graph GR (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in |V |, at most
O(n).

The maximum being when the input array is sorted in
increasing order ; W (n) = O(n2)

The dynamic programming solution is both simple and efficient.

22 / 48

Algorithm and Complexity Analysis
Algorithm 5: LIS(A)
1: initialize all L(i) = 0 for i ∈ [n] by adding dummy edge

e(i, i) = 0 ∈ E;
2: for j = 1 to n do L(j) = 1 + max{L(i) : (i, j) ∈ E} ;
3: return maxj{L(j)}

Note that (i, j) ∈ E is possible only when i < j.
The algorithm requires the predecessors of j to be known

Construct the adjacency list of the reverse graph GR (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in |V |, at most
O(n).

The maximum being when the input array is sorted in
increasing order ; W (n) = O(n2)

The dynamic programming solution is both simple and efficient.

22 / 48

Algorithm and Complexity Analysis
Algorithm 6: LIS(A)
1: initialize all L(i) = 0 for i ∈ [n] by adding dummy edge

e(i, i) = 0 ∈ E;
2: for j = 1 to n do L(j) = 1 + max{L(i) : (i, j) ∈ E} ;
3: return maxj{L(j)}

Note that (i, j) ∈ E is possible only when i < j.
The algorithm requires the predecessors of j to be known

Construct the adjacency list of the reverse graph GR (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in |V |, at most
O(n).

The maximum being when the input array is sorted in
increasing order ; W (n) = O(n2)

The dynamic programming solution is both simple and efficient.

22 / 48

Algorithm and Complexity Analysis
Algorithm 7: LIS(A)
1: initialize all L(i) = 0 for i ∈ [n] by adding dummy edge

e(i, i) = 0 ∈ E;
2: for j = 1 to n do L(j) = 1 + max{L(i) : (i, j) ∈ E} ;
3: return maxj{L(j)}

Note that (i, j) ∈ E is possible only when i < j.
The algorithm requires the predecessors of j to be known

Construct the adjacency list of the reverse graph GR (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in |V |, at most
O(n).

The maximum being when the input array is sorted in
increasing order ; W (n) = O(n2)

The dynamic programming solution is both simple and efficient.
22 / 48

Trace Solution

There is one last issue to be cleared up.

The L-values only tell us the length of the optimal subsequence,
how to recover the subsequence itself?

This is easily managed with bookkeeping device
when computing L(j), note down prev(j), the next-to-last
node on the longest path to j (think how?)

The optimal subsequence can then be reconstructed by the
following these backpointers.

23 / 48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences
The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn’t that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure
would require exponential time.

Suppose the given numbers are sorted. Clearly, this is the
worse case. The formula for subproblem L(j) becomes:

L(j) = 1 + max{L(1), L(2), . . . , L(j − 1)}

The following figure unravels the recursion for L(5). Notice the
same subproblems get solved over and over again.

24 / 48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences
The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn’t that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure
would require exponential time.

Suppose the given numbers are sorted. Clearly, this is the
worse case. The formula for subproblem L(j) becomes:

L(j) = 1 + max{L(1), L(2), . . . , L(j − 1)}

The following figure unravels the recursion for L(5). Notice the
same subproblems get solved over and over again.

24 / 48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences
The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn’t that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure
would require exponential time.

Suppose the given numbers are sorted. Clearly, this is the
worse case. The formula for subproblem L(j) becomes:

L(j) = 1 + max{L(1), L(2), . . . , L(j − 1)}

The following figure unravels the recursion for L(5). Notice the
same subproblems get solved over and over again.

24 / 48

Why Recursion is Not Good?
L(5)

L(1) L(2) L(3) L(4)

L(1) L(1) L(2) L(1) L(2) L(3)

L(1) L(1) L(1) L(2)

L(1)

Nodes correspond to the computation cost. Let C(n) be the
number of nodes on the tree for L(n). We have T (n) = C(n).
Clearly, we have the following iterative relation:

C(n) = C(n− 1) + · · ·+ C(2) + C(1)

C(n) is exponentially in n ; a recursive solution is disastrous

25 / 48

Why Recursion is Not Good?
L(5)

L(1) L(2) L(3) L(4)

L(1) L(1) L(2) L(1) L(2) L(3)

L(1) L(1) L(1) L(2)

L(1)

Nodes correspond to the computation cost. Let C(n) be the
number of nodes on the tree for L(n). We have T (n) = C(n).

Clearly, we have the following iterative relation:
C(n) = C(n− 1) + · · ·+ C(2) + C(1)

C(n) is exponentially in n ; a recursive solution is disastrous

25 / 48

Why Recursion is Not Good?
L(5)

L(1) L(2) L(3) L(4)

L(1) L(1) L(2) L(1) L(2) L(3)

L(1) L(1) L(1) L(2)

L(1)

Nodes correspond to the computation cost. Let C(n) be the
number of nodes on the tree for L(n). We have T (n) = C(n).
Clearly, we have the following iterative relation:

C(n) = C(n− 1) + · · ·+ C(2) + C(1)

C(n) is exponentially in n ; a recursive solution is disastrous
25 / 48

Similar Case for Fibonacci Number

F (5)

F (4) F (3)

F (3) F (2) F (2) F (1)

F (2) F (1) F (1) F (0) F (1) F (0)

F (1) F (0)

Recursive approach: complexity is F (n).
Let C(n) be the the nodes on the tree for F (n), we have:

C(n) = C(n− 1) + C(n− 2) = F (n)

Iterative approach: complexity is O(n).
Divide-and-conquer approach: complexity is O(logn).

26 / 48

Similar Case for Fibonacci Number

F (5)

F (4) F (3)

F (3) F (2) F (2) F (1)

F (2) F (1) F (1) F (0) F (1) F (0)

F (1) F (0)

Recursive approach: complexity is F (n).
Let C(n) be the the nodes on the tree for F (n), we have:

C(n) = C(n− 1) + C(n− 2) = F (n)

Iterative approach: complexity is O(n).
Divide-and-conquer approach: complexity is O(logn).

26 / 48

Similar Case for Fibonacci Number

F (5)

F (4) F (3)

F (3) F (2) F (2) F (1)

F (2) F (1) F (1) F (0) F (1) F (0)

F (1) F (0)

Recursive approach: complexity is F (n).
Let C(n) be the the nodes on the tree for F (n), we have:

C(n) = C(n− 1) + C(n− 2) = F (n)

Iterative approach: complexity is O(n).

Divide-and-conquer approach: complexity is O(logn).

26 / 48

Similar Case for Fibonacci Number

F (5)

F (4) F (3)

F (3) F (2) F (2) F (1)

F (2) F (1) F (1) F (0) F (1) F (0)

F (1) F (0)

Recursive approach: complexity is F (n).
Let C(n) be the the nodes on the tree for F (n), we have:

C(n) = C(n− 1) + C(n− 2) = F (n)

Iterative approach: complexity is O(n).
Divide-and-conquer approach: complexity is O(logn).

26 / 48

Dynamic Programming vs. Divide-and-Conquer

In divide-and-conquer, a problem is expressed in terms of
subproblems that are substantially smaller, say half the size.

For instance, MergeSort sorts an array of size n by recursively
sorting two subarrays of size n/2.
The sharp drop in problem size, the full recursion tree has
only logarithmic depth and a polynomial number of nodes.

In dynamic programming, the problem is reduced to subproblems
that are only slightly smaller. Thus the full recursion tree generally
has polynomial depth and exponentially number of nodes.

However, most of these nodes are repeats ; not too many
distinct subproblems among them.
Efficiency is therefore obtained by explicitly enumerating the
distinct subproblems and solving them in the right order.

27 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

28 / 48

Maximum Interval Sum (最大子段和)

Problem. Given an integer array (possibly negative) A[n]

(a1, a2, . . . , an)

Goal. Find the maximum interval sum:

MIS = max{0, max
1≤i≤j≤n

j∑
k=i

ak}

Example. (−2, 11,−4, 13,−5,−2)

Solution: MIS = a2 + a3 + a4 = 20

29 / 48

Possible Algorithms

Brute Force: enumerate all possible (i, j) pairs (i ≤ j), compute
the sum ai + · · ·+ aj and find the largest.

Divide-and-Conquer: Split the array into left halve and right halve,
compute max interval in left halve, right halve and cross one, then
find the largest

Dynamic Programming

30 / 48

Brute Force Algorithm
Algorithm 8: Enumerate(A[n])

Output: MIS, i∗, j∗
1: MIS← 0;
2: for i← 1 to n do
3: for j ← i to n do //enumerate all possible (i, j)
4: sum← 0;
5: for k ← i to j do //compute sum of A[i, j]
6: sum← sum+A[k];
7: end
8: if sum > MIS then //update max interval sum
9: MIS← sum, i∗ ← i, j∗ ← j;

10: end
11: end
12: end

Complexity: n2 ×O(n) = O(n3)

31 / 48

Brute Force Algorithm
Algorithm 9: Enumerate(A[n])

Output: MIS, i∗, j∗
1: MIS← 0;
2: for i← 1 to n do
3: for j ← i to n do //enumerate all possible (i, j)
4: sum← 0;
5: for k ← i to j do //compute sum of A[i, j]
6: sum← sum+A[k];
7: end
8: if sum > MIS then //update max interval sum
9: MIS← sum, i∗ ← i, j∗ ← j;

10: end
11: end
12: end

Complexity: n2 ×O(n) = O(n3)

31 / 48

Divide-and-Conquer

Break A[n] into left halve A[1, k] and right halve A[k + 1, n], with
median k

Recursively compute SL for AL

Recursively compute SR for AR

Compute the max sum S1 with k as the right boundary, compute
the max sum S2 with k + 1 as the left boundary,
Output max{SL, SR, S1 + S2}

A[1] A[k] A[k + 1] A[n]

SL SR

S1 + S2

32 / 48

Pseudocode of Divide-and-Conquer Algorithm

Algorithm 10: MaxIntervalSum(A[i, j])

Output: max interval MIS and left/right boundary
1: if i = j then return max{A[i], 0} and boundaries; //|A| = 1
2: k ← ⌊(i+ j)/2⌋;
3: SL ← MaxIntervalSum(A, i, k) ;
4: SR ← MaxIntervalSum(A, k + 1, j) ;
5: S1 ← MaxOneside(A, i, k,←) ;
6: S2 ← MaxOneside(A, k + 1, j,→) ;
7: return max{SL, SR, S1 + S2} and boundaries;

If A[i] ≤ 0, set the left and right boundary as 0

The complexity of MaxOneside is O(n).

T (n) = 2T (n/2) +O(n)
T (1) = O(1)

}
⇒ T (n) = O(n logn)

33 / 48

Dynamic Programming

Subproblem: left boundary is 1, right boundary is i

Optimized function: OPT(i) — maximum interval sum in
A[1, . . . , i] that must include A[i], with i as the right boundary

OPT(i) = max
1≤k≤i


i∑

j=k

A[j]


A[1] A[2] A[3] . . . A[i− 1] A[i] . . . A[n]

. . .

OPT(i): MIS with i as right boundary

34 / 48

Iterative Relation of Optimized Function

Iterative relation of OPT(i): depending on the contribution of
OPT(i− 1)

OPT(i− 1) < 0: the interval only consists of A[i]

OPT(i− 1) ≥ 0: the interval connects to previous interval

OPT(i) = max{OPT(i− 1) +A[i], A[i]}, i = 1, . . . , n

OPT(1) = A[1]

OPT(0) = 0

MIS = max
1≤i≤n

{OPT(i)}

35 / 48

Iterative Relation of Optimized Function

Iterative relation of OPT(i): depending on the contribution of
OPT(i− 1)

OPT(i− 1) < 0: the interval only consists of A[i]

OPT(i− 1) ≥ 0: the interval connects to previous interval

OPT(i) = max{OPT(i− 1) +A[i], A[i]}, i = 1, . . . , n

OPT(1) = A[1]

OPT(0) = 0

MIS = max
1≤i≤n

{OPT(i)}

35 / 48

Pseudocode
Algorithm 11: DPMaxIntervalSum(A[n])

1: MIS← 0, i∗ ← 0, j∗ ← 0;
2: OPT(0) = 0, OPT(1) = A[1];
3: L(0) = 0 //L(i) records the real left boundary of OPT(i);
4: for i = 1 to n do //i: right boundary of subproblem
5: if OPT(i− 1) > 0 then
6: OPT(i)← OPT(i− 1) +A[i];
7: L(i)← L(i− 1);
8: end
9: else OPT(i)← A[i], L(i) = i;

10: if OPT(i) > MIS then
11: MIS← OPT(i), i∗ ← L(i), j∗ ← i
12: end
13: end
14: return MIS, i∗, j∗;

Time and space complexity: O(n) (think why?)
36 / 48

Remark

[2017 张绍煊, 孟铉济, 侯庆良] observed that:
For MIS, we can reduce the memory cost to O(1) by only tracking
the current largest subproblem with one variable

L[i]→ L∗

This trick works since:
the problem is one-dimension in nature
the iterative relation for OPT is local: OPT(i) only depends
on OPT(i− 1)

37 / 48

Outline

1 Introduction to Dynamic Programming

2 Essence of DP: Shortest Paths in DAGs

3 Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

4 Longest Increasing Subsequences

5 Maximum Interval Sum

6 Image Compression

38 / 48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ∼ 255, 8-bit/1-byte)

{a1, a2, . . . , an}, ai is the gray value of the i-th pixel
a good test image because of its detail,
flat regions, shading, and texture.
Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

Fixed-length image storage. Sequentialize pixels and store: each
pixel takes 8-bit, an n pixels image takes 8n-bit/n-byte

Observe that image usually has some local pattern. Any better
storage method?

39 / 48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ∼ 255, 8-bit/1-byte)

{a1, a2, . . . , an}, ai is the gray value of the i-th pixel
a good test image because of its detail,
flat regions, shading, and texture.
Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

Fixed-length image storage. Sequentialize pixels and store: each
pixel takes 8-bit, an n pixels image takes 8n-bit/n-byte

Observe that image usually has some local pattern. Any better
storage method?

39 / 48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ∼ 255, 8-bit/1-byte)

{a1, a2, . . . , an}, ai is the gray value of the i-th pixel
a good test image because of its detail,
flat regions, shading, and texture.
Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

Fixed-length image storage. Sequentialize pixels and store: each
pixel takes 8-bit, an n pixels image takes 8n-bit/n-byte

Observe that image usually has some local pattern. Any better
storage method?

39 / 48

Variable-Length Compression

Format of variable-length compression. Encoding grayscale values
with variable-length to save storage: divide {a1, a2, . . . , an} into m
segments: S1, S2, . . . , Sm

S1 S2 . . . Sm

Sk contains ℓk number of pixels, pixels in Sk take at most bk-bit

bk = max
a∈Sk

{⌈log a⌉}

fix the maximal length of Sk be 256 ⇒ ℓk can be represented
by 8-bit
bk of Sk is among [1, 8] ⇒ bi can be represented by 3-bit
header of Sk: ℓk + bk = 11 bit ; necessary for decoding

total storage =

m∑
k=1

(bk · ℓk + 11)

40 / 48

Compress Grayscale Image

Constraint:
the lenght of k-th segment: ℓk ≤ 256

the k-th segment takes: bk × ℓk + 11

bk = ⌈log(maxa∈Sk
⌉} ≤ 8

Goal: given {a1, a2, . . . , an}, find the optimal partition:

min
P

{
m∑
k=1

(bk × ℓk + 11)

}
P = {S1, S2, . . . , Sm} is a partition

41 / 48

Example

Sequence of grayscale values

{10, 12, 15, 255, 1, 2, 1, 1, 2, 2, 1, 1}

1 S1 = {10, 12, 15}, S2 = {255}, S3 = {1, 2, 1, 1, 2, 2, 1, 1}

11× 3 + 4× 3 + 8× 1 + 2× 8 = 69

2 S1 = {10, 12, 15, 255, 1, 2, 1, 1, 2, 2, 1, 1}

11× 1 + 8× 12 = 107

3 S1 = {10}, S2 = {12}, S3 = {15}, S4 = {255}, S5 = {1},
S6 = {2}, S7 = {1}, S8 = {1}, S9 = {2}, S10 = {2},
S11 = {1}, S12 = {1},

11× 12 + 4× 3 + 8× 1 + 1× 5 + 2× 3 = 163

Conclusion: the first partition is better
42 / 48

Dynamic Programming Method

Subproblem: left boundary is always 1, right boundary is i

Pixel sequences: {a1, a2, . . . , ai}
Optimized function: OPT(i) is the minimal storage bits for
{a1, . . . , ai}

Computation order

i = 1

i = 2

· · ·

i = n

43 / 48

Algorithm Design

OPT(i): the optimal storage for {a1, a2, . . . , ai}. Let Sm be the
last segment, ℓm be its length. The iterative relation of OPT is:

OPT(i) = min
1≤ℓm≤min{i,256}

{OPT(i− ℓm) + ℓm × bm + 11}

bm =

⌈
log(max

a∈Sm

{a})
⌉
≤ 8

OPT(0) = 0

a1, a2, . . . , ai−ℓ

the first i− ℓm pixels
OPT(i− ℓm)
S1, . . . , Sm−1

ai−ℓ+1, a2, . . . , ai

m-th segment: ℓm pixels
ℓm × bm + 11

Sm

44 / 48

Algorithm 12: Compress(I, n) //compute OPT(n)
1: Lmax ← 256; OPT(0)← 0;
2: for i← 1 to n do //right boundary of subproblem
3: OPT(i)← +∞, L(i)← 0;
4: for ℓm ← 1 to min{i, 256} do
5: bm = length(i− ℓm + 1, i);
6: if OPT(i) > OPT(i− ℓm) + ℓm × bm + 11 then

update OPT(i), L(i)← ℓm;
7: end
8: end

ℓm denote is length of the last candidate segment Sm

length(α, β) is the function that computes bmax for I[α, β]
L(i) is the length of the last segment Sm with i as the right
boundary (last segment in optimal partition for subproblem
[1, i]): used for trace back partition.
OPT(i)← +∞: simply trigger the iteration

Complexity: O(256n)

45 / 48

Demo

Input: I = {10, 12, 15, 255, 1, 2}. Suppose we have finish the
computation of subproblems up to right boundary i = 5.

i 1 2 3 4 5 6

OPT(i) 15 19 23 42 50 ?

L(i) 1 2 3 1 2 ?

46 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Demo

10 12 15 255 1 2

OPT(5) = 50 1× 2 + 11 63

10 12 15 255 1 2

OPT(4) = 42 2× 2 + 11 57

10 12 15 255 1 2

OPT(3) = 23 3× 8 + 11 58

10 12 15 255 1 2

OPT(2) = 19 4× 8 + 11 62

10 12 15 255 1 2

OPT(1) = 15 5× 8 + 11 66

10 12 15 255 1 2

6× 8 + 11 59

47 / 48

Trace Optimal Solution

Algorithm 13: Traceback(L(n)) (input is the trace table)
Output: optimal partition P

1: k ← 1; while n ̸= 0 do
2: P (k)← L(n);
3: n← n− L(n);
4: k ← k + 1;
5: end
6: reverse P ;

P (k): the length of k-th segment
Complexity: O(n)

48 / 48

	Introduction to Dynamic Programming
	Essence of DP: Shortest Paths in DAGs
	Floyd-Warshall Algorithm: All Pairs Shortest Paths in General Graph
	Longest Increasing Subsequences
	Maximum Interval Sum
	Image Compression

