Design and Analysis of Algorithms
Dynamic Programming (1)
@ Introduction to Dynamic Programming

@ Essence of DP: Shortest Paths in DAGs

© Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

e Longest Increasing Subsequences
© Maximum Interval Sum

@ Image Compression

1/48

Outline

@ Introduction to Dynamic Programming

2/48

Algorithmic Paradigms

We have seen two elegant design paradigms.

@ Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, combine solutions to
subproblems to form solution to original problem.

@ Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

o The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

3/48

Algorithmic Paradigms

We have seen two elegant design paradigms.

@ Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, combine solutions to
subproblems to form solution to original problem.

@ Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

o The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

The two paradigms yield lots of efficient algorithms for a variety of
important tasks.

3/48

Algorithmic Paradigms

We have seen two elegant design paradigms.

@ Divide-and-conquer. Break up a problem into independent
subproblems, solve each subproblem, combine solutions to
subproblems to form solution to original problem.

@ Greedy. Build up a solution piece-by-piece, always choosing
the next piece that offers the most obvious and immedeiate
benefit.

o The problems where choosing locally optimal aslo leads to
globally optimal soulution are best fit for Greedy.

The two paradigms yield lots of efficient algorithms for a variety of
important tasks.

We now turn to another sledgehammer of the algorithms craft:
, techniques of very broad applicability.
@ Predictably, the generality often comes with a cost of
efficiency.

3/48

Dynamic Programming History

Dynamic programming. Break up a problem into a series of
overlapping subproblems of the same type, and build up solutions
to larger and larger subproblems.
@ fancy name for caching away intermediate results in a table
for later reuse

4/48

Dynamic Programming History

Dynamic programming. Break up a problem into a series of
overlapping subproblems of the same type, and build up solutions
to larger and larger subproblems.
e fancy name for caching away intermediate results in a table
for later reuse

Bellman. Pioneered the systematic study of DP in 1950s.
@ dynamic programming = planning over time = optimal plan
multistage processes
@ Secretary of Defense was hostile to mathematical research.

@ Bellman sought an impressive name to avoid confrontation.

4/48

Dynamic Programming Applications

Areas

@ Bioinformatics.
Control theory.
Information theory.

Operations research.

Computer science: theory, graphics, Al, compilers, systems, ...

Some famous dynamic programming algorithms

@ Unix diff for comparing two files.

o Viterbi for hidden Markov models.

@ De Boor for evaluating spline curves.

@ Smith-Waterman for genetic sequence alignment.

@ Bellman-Ford for shortest path routing in networks.

@ Cocke-Kasami-Younger for parsing context-free grammars.

5/48

Outline

@ Essence of DP: Shortest Paths in DAGs

6/48

Shortest Path in DAG

Finding shortest path (from a speical source node) is especially
easy in directed acyclic graphs (DAGs). We recapitulate this case,
because it lies at the heart of dynamic programming.
@ Nodes of DAG can be linearized, i.e., arranged on a line so
that all edges go from left to right
o Looking ahead, in this way we create an order

Figure: A DAG and its linearization (topological ordering)
7/48

Why this helps with shortest paths

Example. s — d: the only way get to d is through its predecessors
b or ¢, so we need only compare these two routes:

dist(s,d) = min{dist(s,b) + 1,dist(s, c) + 3}

8/48

Why this helps with shortest paths

Example. s — d: the only way get to d is through its predecessors
b or ¢, so we need only compare these two routes:

dist(s,d) = min{dist(s,b) + 1,dist(s, c) + 3}

A similar relation can be written for every node.

@ Computing these dist values in the left-to-right order =
before getting to a node v, we already have all the
information to compute dist(s,v) = computing all the
distance in a single pass

8/48

Algorithm for Shortest Paths in DAG

Algorithm 1: ShortestPath(V, E)

1: initialize all dist(-,-) to oo, dist(s, s) = 0;

2. for v € V\{s} in linearized order do

3: dist(s,v) = ming, ,ycp{dist(s,u) + e(u,v)}
4: end

9/48

Algorithm for Shortest Paths in DAG

Algorithm 2: ShortestPath(V, E)
. initialize all dist(-,-) to oo, dist(s, s) = 0;

1
2. for v € V\{s} in linearized order do

3: dist(s,v) = ming,.)ep{dist(s,u) + e(u,v)}
4: end

Two methods to estimate computation complexity:
@ Analyze the algorithm: there are at most |E| times

comparisions = O(|E|)
@ Analyze the Storage: size of table dist is |V'|, computing each
item requires at most |V/| times comparisions = O(|V|?)
e the second estimation could be too coarse when the graph is
sparse, since in that case |E| < |V?]

9/48

Recap

The above algorithm solves a collection of subproblems
{dist(s, u) tuev

@ start from the smallest of them, dist(s, s)

@ then proceed to solve progressively “larger” subproblems:
distances to vertices that are further along the linearization

@ large subproblems can be solved by previously solved smaller
subproblems

10/48

Recap

The above algorithm solves a collection of subproblems
{dist(s, u) tuev

@ start from the smallest of them, dist(s, s)

@ then proceed to solve progressively “larger” subproblems:
distances to vertices that are further along the linearization

@ large subproblems can be solved by previously solved smaller
subproblems

This is a very generic technique.

e dist(-,-) in our particular case computing the minimum of
sums, we could just as well make it to be maximum.

@ Or we could use a product instead of a sum.

10/48

Key Property of Dynamic Programming

Iterative optimal substructure

3 an ordering on the subproblems and an iterative relation:
@ subproblems appear in the ordering

@ iterative relation shows how to solve a subproblem P
using the answers to “smaller” subproblems P’, a.k.a.
optimal solution for P can be derived from optimal
solutions for P’ C P

~> admits iteration in a single pass

11/48

DP Paradigm

Dynamic programming is a very powerful algorithmic paradigm: a
problem is solved by identifying a collection of subproblems and
tackling them one by one

@ smallest first

@ using answers to small problems to solve larger ones

@ until reaching the original problem
In dynamic programming, the DAG is implicit and should always be
kept in mind

@ node <> subproblem/state (associated with an optimal

function value)

@ edge a — b represents dependencies between a and b, in other
words, if to solve subproblem b we need to the answer to
subproblem a, then there is a (conceptual) edge from a to b
= a is thought of as a smaller subproblem than b

12/48

Outline

© Floyd-Warshall Algorithm: All Pairs Shortest Paths in General
Graph

13/48

All Pairs Shortest Paths

Life is complicated. In practice, we need algorithm for general
directed graph: G could have negative weights.

@ Dijkstra's algorithm fails to handle negative weights.
@ Bellman-Ford algorithm works correctely with SSSP in general
directed graph with higher complexity O(|V||E|).

What if we want to find the shortest path not just from a
single-source s but all sources?

Naive idea: invoking Bellman-Ford algorithm |V'| times, once for
each starting node ~ running time O(|V|?|E|)

e typically, |E| > |V|

Better algorithm?

14 /48

Floyd-Warshall Algorithm

Floyd-Warshall algorithm: a better dynamic-programming
algorithm with better complexity O(|V|3)

Basic idea. the shortest path u — w; — -+ — w; — v between
(u,v) uses some number of intermediate nodes — possibly none.

@ Suppose we disallow intermediate nodes altogether ~ solve
all-pairs shortest paths at once: dist(u,v) = e(u,v).

What if we gradually expand the set S of permissible intermediate
nodes?

We can do this one node at a time, updating the shortest path
lengths at each stage.

@ Eventually S grows to V' = at this point all vertices are
allowed to be on all paths ~ find the true shortest paths
between vertices of the graph.

15/48

Dynamic Programming on Intermediates

Number the vertices in V as {1,2,...,n}, and let dist(i, j, k)
denote the length of the shortest path from ¢ to j in which only
nodes {1,2,...,k} can be used as intermediates.
e Initially, dist(7, j,0) is the length of the direct edge between i
and j if it exists and is co otherwise.
dist(i, k, k — 1) k

dist(k, j, k — 1)

Gradually increase the number of admissble intermediate node.
The initial value of dist(i, j, k) is dist(i, j, k — 1).

Using k gives us shorter path from ¢ to j if and only if
dist(i, k, k — 1) + dist(k, j, k — 1) < dist(, 5,k — 1)
In this case, dist(i, j, k) should be updated accordingly.

16/48

Floyd-Warshall Algorithm

Algorithm 3: FloydWarshall(G = (V, E))

1: fori=1ton do

2 for j =1 ton do

3 dist(7, j,0) = oo

4 end

5: end

6: for (i,j) € E do dist(i,7,0) = e(i,j) ;

7. for k=1 ton do

8 fori=1 ton do

9: for j =1 ton do

10 dist(i, j, k) = min{dist(i, k, k — 1) + dist(k, j, k —

1),dist(i, 5,k — 1)}
11: end
12: end
13: end

17/48

Outline

@ Longest Increasing Subsequences

18/48

Longest Increasing Subsequences

Input: a sequence of numbers aq,...,a,.

@ A subsequence is any subset of these numbers taken in order,
of the form a;,,...,a;, where 1 <3 <... <j <mn.

@ An increasing subsequence is one in which the numbers are
getting strictly larger.

Goal: find the increasing subsequence of greatest length.

Example

The arrow denotes transitions between consecutive elements of the
optimal solution in the original sequence.

19/48

The DAG of Increasing Subsequence

Goal: find the optimal soultion from the solution space (all
increasing subsequences) = create a graph of all permissible
transitions for increasing subsequence
o Establish a node i for each element a;, add directed edges
(7,7) whenever it is possible for a; and a; to be consecutive
elements in an increasing subsequence, i.e., 1 < j Aa; < a;

G = (V,E) is a DAG, since (i,7) € Eiffi < j
@ there is a one-to-one correspondence between increasing
subsequences and paths in this DAG

20/48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.

21/48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.
Define L(j): number of nodes on the longest path (the longest
increasing subsequence) ending at j

e interpret L(j) as the longest path (1) with j as destination
from all possible source

¢ = max L(j)
J€ln]

21/48

Dynamic Programming

Our goal translates LIS to find the longest path in the dag.
Define L(j): number of nodes on the longest path (the longest
increasing subsequence) ending at j

e interpret L(j) as the longest path (1) with j as destination
from all possible source

¢ = max L(j)
J€ln]

To solve LIS, we defined a collection of subproblems {L(j)} je[n]
with the optimal sub-structure property that allows them to be
solved in a single pass.

21/48

Algorithm and Complexity Analysis
Algorithm 4: LIS(A)
1: initialize all L(i) = 0 for i € [n] by adding dummy edge
e(i,i) =0 € E;
2 forj=1tondo L(j)=1+max{L(i): (i,j) € E};
3: return max;{L(j)}

e Note that (i,j) € E is possible only when i < j.

22/48

Algorithm and Complexity Analysis
Algorithm 5: LIS(A)
1: initialize all L(i) = 0 for i € [n] by adding dummy edge
e(i,i) =0 € E;
2 forj=1tondo L(j)=1+max{L(i): (i,j) € E};
3: return max;{L(j)}

e Note that (i,j) € E is possible only when i < j.

The algorithm requires the predecessors of j to be known
o Construct the adjacency list of the reverse graph G* (typically
in linear time)

22/48

Algorithm and Complexity Analysis
Algorithm 6: LIS(A)
1: initialize all L(i) = 0 for i € [n] by adding dummy edge
e(i,i) =0 € E;
2 forj=1tondo L(j)=1+max{L(i): (i,j) € E};
3: return max;{L(j)}

e Note that (i,j) € E is possible only when i < j.

The algorithm requires the predecessors of j to be known
o Construct the adjacency list of the reverse graph G* (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in V|, at most
O(n).
@ The maximum being when the input array is sorted in
increasing order ~ W (n) = O(n?)

22/48

Algorithm and Complexity Analysis
Algorithm 7: LIS(A)
1: initialize all L(i) = 0 for i € [n] by adding dummy edge
e(i,i) =0 € E;
2. forj=1tondo L(j)=1+max{L(:):(i,j) € E};
3: return max;{L(j)}

e Note that (i,j) € E is possible only when i < j.

The algorithm requires the predecessors of j to be known
o Construct the adjacency list of the reverse graph G* (typically
in linear time)

The computation of L(j) then takes time proportional to the
indegree of j, giving an overall running time linear in V|, at most
O(n).
@ The maximum being when the input array is sorted in
increasing order ~ W (n) = O(n?)

The dynamic programming solution is both simple and efficient.

22/48

Trace Solution

There is one last issue to be cleared up.

The L-values only tell us the length of the optimal subsequence,
how to recover the subsequence itself?
@ This is easily managed with bookkeeping device
o when computing L(j), note down prev(j), the next-to-last
node on the longest path to j (think how?)
@ The optimal subsequence can then be reconstructed by the
following these backpointers.

23/48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences

@ The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn't that be even simpler?

24/48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences

@ The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn't that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure
would require exponential time.

@ Suppose the given numbers are sorted. Clearly, this is the
worse case. The formula for subproblem L(j) becomes:

L(j) =1+ max{L(1),L(2),...,L(j — 1)}

24/48

Recursion? No, thanks.

Returning to our discussion of longest increasing subsequences

@ The formula for L(j) also suggests an alternative, recursive
algorithm. Wouldn't that be even simpler?

Actually, recursion is a very bad idea: the resulting procedure
would require exponential time.

@ Suppose the given numbers are sorted. Clearly, this is the
worse case. The formula for subproblem L(j) becomes:

L(j) =1+ max{L(1),L(2),...,L(j — 1)}

The following figure unravels the recursion for L(5). Notice the
same subproblems get solved over and over again.

24/48

Why Recursion is Not Good?

s
MMW\\\\\ru
~ //////mmw
~
S ~ =
~ ~ ~
\ S
D =
~
mmwxx\\\\ru ~
~ //////ﬂnﬂ
~
EC)
~ ~
=
=

25 /48

Why Recursion is Not Good?
L(5)

///\

L) L) L3 L(4)
NVATVZRN

L(1) L(1) 2) ;

L(1) L(1) L(1)

2) L)

h

3)

)

L(1)

Nodes correspond to the computation cost. Let C'(n) be the
number of nodes on the tree for L(n). We have T'(n) =

(2)

C(n).

25 /48

Why Recursion is Not Good?
L(5)

/// N
L)~ L2 L3 L(4)
L(1) L(l{>2) L(1) LQ)\L(?))
/\
L(1) L(1) L) L)
L(1)

Nodes correspond to the computation cost. Let C'(n) be the
number of nodes on the tree for L(n). We have T'(n) = C(n).

Clearly, we have the following iterative relation:
Cn)=Cn—-1)+---+C(2)+C(1)

e C(n) is exponentially in n ~ a recursive solution is disastrous

25 /48

Similar Case for Fibonacci Number

Similar Case for Fibonacci Number

F(5)
F(4)/ \F
AN N
F(3) F(2) F(2) F(1)
S
/\
F(1) F(0)

Recursive approach: complexity is F'(n).
@ Let C(n) be the the nodes on the tree for F'(n), we have:

Cn)=C(n—1)+C(n—-2)=F(n)

26 /48

Similar Case for Fibonacci Number

F(5)
F(4)/ \F
AN N
F(3) F(2) F(2) F(1)
S
/\
F(1) F(0)

Recursive approach: complexity is F'(n).
@ Let C(n) be the the nodes on the tree for F'(n), we have:

Cn)=C(n—1)+C(n—-2)=F(n)

Iterative approach: complexity is O(n).

26 /48

Similar Case for Fibonacci Number

F(3) F(2) F(9) (1)
m{ ><1> m{ ><0) F(K >(o>
/\

F(1) F(0)
Recursive approach: complexity is F'(n).
@ Let C(n) be the the nodes on the tree for F'(n), we have:
Cn)=C(n—1)+C(n—-2)=F(n)
Iterative approach: complexity is O(n).

Divide-and-conquer approach: complexity is O(logn).
2648

Dynamic Programming vs. Divide-and-Conquer

In divide-and-conquer, a problem is expressed in terms of
subproblems that are substantially smaller, say half the size.

@ For instance, MergeSort sorts an array of size n by recursively
sorting two subarrays of size n/2.
@ The sharp drop in problem size, the full recursion tree has
only logarithmic depth and a polynomial number of nodes.
In , the problem is reduced to subproblems

that are only slightly smaller. Thus the full recursion tree generally
has polynomial depth and exponentially number of nodes.

@ However, most of these nodes are repeats ~» not too many
distinct subproblems among them.

o Efficiency is therefore obtained by explicitly enumerating the
distinct subproblems and solving them in the right order.

27 /48

Outline

© Maximum Interval Sum

28/48

Maximum Interval Sum (& X T & 7»)

Problem. Given an integer array (possibly negative) A[n]

(a1,a2,...,an)

Goal. Find the maximum interval sum:

MIS = max{0, max Zak}

1<i<j<n £

Example. (—2,11,—-4,13,—5,—2)

Solution: MIS = as + ag + a4 = 20

29 /48

Possible Algorithms

Brute Force: enumerate all possible (7,) pairs (i < j), compute
the sum a; + - -- + a; and find the largest.

Divide-and-Conquer: Split the array into left halve and right halve,
compute max interval in left halve, right halve and cross one, then

find the largest

Dynamic Programming

30/48

Brute Force Algorithm

Algorithm 8: Enumerate(A[n))
Output: MIS, *, j*

1: MIS « 0;

2. for i <1 ton do

3: for j < i ton do //enumerate all possible (i, j)
4: sum < 0;

5: for k < i to j do //compute sum of Ali, j]
6: sum < sum + A[k];

7: end

8: if sum > MIS then //update max interval sum
o: MIS « sum, i* < i, j* < j;

10: end

11: end

12: end

31/48

Brute Force Algorithm

Algorithm 9: Enumerate(A[n))
Output: MIS, *, j*

1: MIS « 0;

2. for i <1 ton do

3: for j < i ton do //enumerate all possible (i, j)
4: sum < 0;

5: for k < i to j do //compute sum of Ali, j]
6: sum < sum + A[k];

7: end

8: if sum > MIS then //update max interval sum
o: MIS « sum, i* < i, j* < j;

10: end

11: end

12: end

Complexity: n? x O(n) = O(n?)

31/48

Divide-and-Conquer

Break A[n] into left halve A[1, k] and right halve Ak + 1,n], with
median k

@ Recursively compute Sy, for A,

@ Recursively compute Si for Ar

Compute the max sum 57 with k as the right boundary, compute
the max sum S5 with k£ + 1 as the left boundary,

Output max{Sz, Sg,S1 + S2}

S1+ 59

SL SR
All] Alk] | A[k+ 1] Aln]

32/48

Pseudocode of Divide-and-Conquer Algorithm

Algorithm 10: MaxIntervalSum(A[i, j])

Output: max interval MIS and left/right boundary

if ¢ = j then return max{A[i],0} and boundaries; //|A| =1
ke [(i+7)/2];

S1, < MaxlIntervalSum(A4, i, k) ;

Sr < MaxIntervalSum(A, k +1,5) ;

S1 < MaxOneside(A, i, k, <) ;

Sy < MaxOneside(A, k + 1,7, —) ;

return max{Sy, Sg, S1 + S2} and boundaries;

N g R e

o If A[i] <0, set the left and right boundary as 0
@ The complexity of MaxOneside is O(n).

T(n) =2T(n/2) + O(n)

T(1) = O(1) }éT(n):O(nlogn)

33/48

Dynamic Programming

Subproblem: left boundary is 1, right boundary is ¢

Optimized function: OPT (i) — maximum interval sum in
All,...,d] that must include A[:], with ¢ as the right boundary

OPT = A
= max. Z

Al A2] A[B] - Ali—1] A[] - Aln]

OPT(i): MIS with ¢ as right boundary

34/48

Iterative Relation of Optimized Function

Iterative relation of OPT(7): depending on the contribution of
OPT(i —1)
@ OPT(i — 1) < 0: the interval only consists of AJi]

@ OPT(i — 1) > 0: the interval connects to previous interval

35/48

Iterative Relation of Optimized Function

Iterative relation of OPT(7): depending on the contribution of
OPT(i —1)
@ OPT(i — 1) < 0: the interval only consists of AJi]

@ OPT(i — 1) > 0: the interval connects to previous interval

OPT(i) = max{OPT(i — 1) + A[i], A[i]},i=1,....n
OPT(1) = A[1]
OPT(0) =0

MIS = max {OPT (i)}

1<i<n

35/48

Pseudocode

Algorithm 11: DPMaxIntervalSum(A[n])

1: MIS + 0,i* < 0,j* < 0;

2. OPT(0) =0, OPT(1) = A[1];

3. L(0) =0 //L(i) records the real left boundary of OPT(i);

4. fori=1 ton do //i: right boundary of subproblem
5: if OPT(: —1) > 0 then

6: OPT(i) «+~ OPT(i — 1) + A[il;

7: L(i) « L(i —1);

8: end

9: else OPT (i) < Alz], L(i) = 4;

10: if OPT (i) > MIS then

11: MIS <— OPT(¢), i* < L(i), j* <1
12: end

13: end

14: return MIS, i*, j*;

Time and space complexity: O(n) (think why?)

36,48

Remark

[2017 ik 42)5, h4%H, 4%)% B| observed that:
For MIS, we can reduce the memory cost to O(1) by only tracking
the current largest subproblem with one variable

L[i] - L*

This trick works since:
@ the problem is one-dimension in nature

@ the iterative relation for OPT is local: OPT (i) only depends
on OPT(i —1)

37/48

Outline

@ Image Compression

38/48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ~ 255, 8-bit/1-byte)

{ay,a9,...,a,}, a; is the gray value of the i-th pixel

@ a good test image because of its detail,
flat regions, shading, and texture.

@ Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

39/48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ~ 255, 8-bit/1-byte)

{ay,a9,...,a,}, a; is the gray value of the i-th pixel

@ a good test image because of its detail,
flat regions, shading, and texture.

@ Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

Fixed-length image storage. Sequentialize pixels and store: each
pixel takes 8-bit, an n pixels image takes 8n-bit/n-byte

39/48

Compress Grayscale Image

Grayscale image can be viewed as a sequence of pixels (each pixel
ranges from 0 ~ 255, 8-bit/1-byte)

{ay,a9,...,a,}, a; is the gray value of the i-th pixel

@ a good test image because of its detail,
flat regions, shading, and texture.

@ Lena Forsén was also guest of honor at
the banquet of IEEE ICIP 2015,
delivered a speech and chaired the best
paper award ceremony.

Fixed-length image storage. Sequentialize pixels and store: each
pixel takes 8-bit, an n pixels image takes 8n-bit/n-byte

Observe that image usually has some local pattern. Any better
storage method?

39/48

Variable-Length Compression

Format of variable-length compression. Encoding grayscale values

with variable-length to save storage: divide {a1,as,...,a,} into m
segments: S1,59,...,5n,
S | % | 0 | Sm |

Sy, contains £, number of pixels, pixels in Sy take at most by-bit
b = 1
& = max{[logal}

@ fix the maximal length of Sy be 256 = /; can be represented
by 8-bit

@ by of Sy is among [1,8] = b; can be represented by 3-bit

@ header of Sy: ff + by = 11 bit ~ necessary for decoding

m

total storage = Z(bk A+ 11)
k=1

40/48

Compress Grayscale Image

Constraint:
o the lenght of k-th segment: ¢} < 256
o the k-th segment takes: by x £ + 11
o b = [log(maxseg, |} <8

Goal: given {a1,as,...,a,}, find the optimal partition:

k=1
P ={51,59,...,5y} is a partition

41/48

Example
Sequence of grayscale values
{10,12,15,255,1,2,1,1,2,2,1,1}
Q S5 = {10,12,15}, Sy = {255}, S5 = {1,2,1,1,2,2,1,1}
11x3+4x34+8x1+2x8=69
Q@ S5 ={10,12,15,255,1,2,1,1,2,2,1,1}

11 x1+8x 12 =107

© Sy = {10}, So = {12}, S5 = {15}, 84 = {255}, 95 = {1},

Se = {2}, S7 = {1}, Ss = {1}, So = {2}, S10 = {2},
Su = {1}, S12 = {1},

11 x1244x3+8x1+1x5+2x3=163

Conclusion: the first partition is better

42/48

Dynamic Programming Method

Subproblem: left boundary is always 1, right boundary is i
o Pixel sequences: {a1,az,...,a;}
e Optimized function: OPT (%) is the minimal storage bits for
{ai,...,a;}

Computation order

43 /48

Algorithm Design

OPT(7): the optimal storage for {a1,as,...,a;}. Let Sy, be the
last segment, ¢, be its length. The iterative relation of OPT is:

~)

OPT(i) = 1<Zm<r1r111m{l 2563 {OPT(i — €p) + £y X by, + 11}

by = {log(mgx{a})—‘ <8

acdm
OPT(0) = 0
l a1, az;,...,a;—y ‘ Qj—p+1,02;--.,04 ‘
the first i — £,,, pixels m-th segment: £, pixels
OPT(i — £) o X b + 11
Slw . -aSmfl Sm

44/48

Algorithm 12: Compress(I,n) //compute OPT(n)

1. Lmax < 256; OPT(0) < 0;
2: for i <1 ton do //right boundary of subproblem

3: OPT(i) + 400, L(i) < 0;

4 for ¢, < 1 to min{i,256} do

5: by, = length(i — £, + 1,1);

6: if OPT(i) > OPT(i — £in) + L X by + 11 then
update OPT(3), L(i) < {pm;

7 end

8: end

@ /., denote is length of the last candidate segment .S,

@ length(a,) is the function that computes bmax for I[a, (]

e L(i) is the length of the last segment S,,, with ¢ as the right
boundary (last segment in optimal partition for subproblem
[1,1]): used for trace back partition.

@ OPT(7) < +oo: simply trigger the iteration

Complexity: O(256n)

45/48

Demo

Input: I ={10,12,15,255,1,2}. Suppose we have finish the
computation of subproblems up to right boundary ¢ = 5.

i 1234576
OPT(i) | 15 | 19 | 23 [42 | 50
LG 12312

46 /48

Demo

10 | 12 15 255 1 2
OPT(5) = 50 1x24+11 63

47/48

10 [12 | 15 | 255 | 1 | 2 |
OPT(5) = 50 1x2+11 63
10 [12 [15 | 255 | 1 | 2 |
OPT(4) = 42 2 x2+11 57

47/48

10 [12 15 | 255 | 1 [2 |
OPT(5) = 50 1x24+11 63

10 | 12 5 | 25 | 1 | 2 |
OPT(4) = 42 2 x2+11 57

10 | 12 5 | 255 | 1 [2 |
OPT(3) = 23 3x8+11 58

47/48

10 [12 15 255 | 1 |

OPT(5) = 50 1x 2411
10 [12 15 255 | 1 |

OPT(4) = 42 2 x2+11
10 | 12 15 255 | 1 |

OPT(3) = 23 3x5+11
10 | 12 15 255 | 1 |

OPT(2) = 19 4x8+11

o8

62

47/48

Demo

10 [12 15 | 255 | 1 [2 |
OPT(5) = 50 1x 2411
10 | 12 5 | 25 | 1 | 2 |
OPT(4) = 42 2 x2+11
10 | 12 5 | 255 | 1 [2 |
OPT(3) = 23 3% 8+ 11

10 | 12 15 [255 [1 [2 |
OPT(2) = 19 4x8+11

|10 | 12 15 | 255 | 1 | 2 |
OPT(1) = 15 5x 8411

o8

62

66

47/48

Demo

TN BN BN 0 B W o

OPT(5) = 50 1x2411
(W T e [5 % e

OPT(4) = 42 2% 2+11
[N T N R 0

OPT(3) = 23 3x 8411
OO 0 0

OPT(2) = 19 4% 8 +11

OPT(1) =15 5x 8411

6 x8+11

63

o8

62

66

59

47 /48

Trace Optimal Solution

Algorithm 13: Traceback(L(n)) (input is the trace table)
Output: optimal partition P

1: k< 1; while n # 0 do
2: P(k) < L(n);

3: n < n — L(n);

4: k<« k+1;

5. end

6: reverse P;

o P(k): the length of k-th segment
e Complexity: O(n)

48 /48

	Introduction to Dynamic Programming
	Essence of DP: Shortest Paths in DAGs
	Floyd-Warshall Algorithm: All Pairs Shortest Paths in General Graph
	Longest Increasing Subsequences
	Maximum Interval Sum
	Image Compression

